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Invalidity of the replica trick for a two-dimensional fermion 
model 

Klaus Ziegler 
Fachbereich Physik, Gesamthochschule Essen, 4300 Essen, West Germany 

Received 16 April 1986, in final form 23 June 1986 

Abstract. Non-interacting fermions in a random potential are considered on a square 
lattice. Such a model was previously proposed as a description of the quenched thermo- 
dynamics of a disordered king model. We compare in a perturbative approach the replica 
trick and a formal functional integral representation and find that they yield different results. 

Fermion field theories are widely used to model low-dimensional systems of statistical 
and solid state physics near phase transition points [I]. Of particular interest are 
random models, since they presumably describe a number of phenomena as phase 
transitions in disordered spin systems or the integer quantum Hall effect [2]. Most of 
the investigations in this field are based on the replica trick. This method works 
successfully in various boson field theories. Well known examples are models for 
polymer chains [3] and non-interacting electrons in a random potential [4]. However, 
we will demonstrate in the following that this trick is invalid in certain random fermion 
models. 

A simple description of fermions on a two-dimensional lattice A c 2’ is given by 
the Hamiltonian 

H = Ho+  VU^ Ho = u I A I  + u ~ A ,  (1) 

Ajf(x)=I[f(x+ej)-f(x-ej)l (2) 

with Pauli matrices aj, the lattice differential operator Aj 

x E A, ejS the lattice unit vector in the j direction and a random potential V (  r). We 
assume for the latter a Gaussian distribution which is statistically independent on 
different lattice points: 

( Vr) = 0 ( V3) = 2g. (3) 

We will restrict the following investigations to the average Green function of our model: 
1 

G(m) =i Tr lim (( H + m +i&Auo)-l)v. 
/AI s - 0  

(4) 

The diagonal matrix i&D with 0, E {-1, l}, D, = -Dr, for Ir - r’l = 1 is introduced to 
have a well defined inverse matrix [5]. 
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A functional integral representation of (3) was discussed in the literature by several 
authors [ 6 ] .  They considered a U ( N )  symmetric fermion action 

with the fermion field 

*;; a E{l ,2 , .  . . , N }  CL, YE{1,2} 
and the scalar product 

and defined a Green function 

Then it was argued that the Green function G ( m )  can be obtained from ( 6 )  taking 
the limit N -j 0. 

However, there is another functional integral representation which avoids this 
limiting process [7]. It is given by the UPL(1,l)  symmetric action 

where the field 4 has boson and fermion components 

+;;&;:;,’ = (- l)%$;yr$;; 

4$ = (4fr)** (8) 

a, CL, YE{1,2} 

Thus the Green function is 

1 
G ( m )  =- 1 C 4;:Dr4;; e x ~ ( - S )  d4;;. ( 9 )  In1 r c1 u+,v,r  

The matrix D in S is important to ensure the existence of certain integrations over 
boson fields in the derivation of the functional integral. Moreover, the free field limit 
( g  = 0 )  does not exist if D is absent such that we could not apply pertubation theory 
around g = 0. These problems are related to the fact that Ho is antiHermitian whereas 
the potential V is Hermitian. Nevertheless, the introduction of D transforms the 
propagator ( H o +  m)-’  into a Hermitian one, namely ( (Ho+ m)D)- ’ .  A consequence 
of this transformation is the reduction of the translational invariance to the sublattices 
with lattice constant J 2  due to D. 

Now we are in a position to verify or falsify the replica trick comparing (9) with 
the limit N + 0 of ( 6 )  in terms of pertubation theory. Unfortunately, the pertubation 
expansions in powers of g do not exist for m = 0 due to singularities of the propagators. 
On the other hand, we are particularly interested in the long-range behaviour in the 
vicinity of the critical point m = 0. Therefore, we approximate the Fourier transformed 
propagator 

m ik,-k2 

by terms linear in kj and introduce a cut-off: 

k: + k i  IT’. 
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( 5 )  is the N-component Gross-Neveu model with cut-off [8] in this approximation. 
We apply Wilson's renormalisation group method according to references [9,10]: 

(i) integration over the fields for 7r/2 < lkjl S T, 

(ii) scaling & by 2, 
(iii) scaling $ by 2-3'2. 

There is a multiplicative mass renormalisation 

m'= m(2+o(g)) (12) 

which yields m = 0 as the critical point. Furthermore, the renormalisation of g in 
one-loop order is 

2 log 2 
(1 - jv)g2+o(g3). 

g ' = g - ? r  

Thus the renormalisation group transformation in the replica limit N=O drives the 
coupling constant to the free field limit g = 0 [6 ] .  

The situation is different for the UPL( 1 , l )  symmetric action (7). To show this we 
perform the Fourier transformation of the propagator on the sublattice AI which is 
generated by e, + e2 and e, - e2(u  E {1,2} indicates the sublattice Au):  

with ak = -(1+ i) k, + (1 - i)k,+ o( k;). 
We again neglect non-linear terms in 4 and choose the condition (11 ) .  The mass 

renormalisation is then of the same form as written in (12). The quartic interaction 
in (7) is, however, not closed under the renormalisation group transformation. There- 
fore, we must consider the more complicated interaction: 

f gp 1 f f 1 ~ 2 ' 2 ~ * . 3 u 3 ~ 4 u 4 ~ p 1 u 1  R + ~ ~ u z R + ~ ~ u ~ R ~ ~ . , u . , R  (15) 
REA1 pl .  _.., p 4 = 1  u1, ..., ~ 3 ~ 1  

with 

g,, U1 w z u 2 c 3 ~ 3 P 4 u 4  = %, cz %w4[ %I F3'Ul U 2  SU3,( g10% -3 + g20% a,) 

+ ~ , l p 3 ~ u 1 u z ~ u , u 4 ( g l  1 Sup3 + g21 4r1a3)1 

+ ~ p I C 4 ~ e 2 t 3 ~ C 1 p 2 ~ u l ~ z ~  f21 ~ u 1 u 3 ~ u 2 0 4  + t22~u ,u4&7*u3)  

where # p, 6 # u. 
The initial conditions in the present approach are 

g10= g11> 0 

g,, = g,, = f*l  = t*2 = 0. 

The renormalisation group transformation in one-loop order conserves 

g10 = g11=: g1 

g20 = g21=: g2 

t2] = tz2=: t 
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such that we find at the critical point m = O( c = log 21 r) 

We note the plus sign in front of the g: term instead of the minus sign for the fermion 
model in (13). The difference occurs due to the different types of propagators in the 
former (i.e. Hermitian) and the latter (i.e. antiHermitian) case. The positive non-linear 
terms in (18) cause arbitrary increasing coupling constants under renormalisation in 
contrast to the decreasing behaviour found for the fermion replica model. 

Our pertubative approach clears up a recent controversy about the evaluation of 
the Green function G( m) .  It was conjectured that this quantity describes the quenched 
internal energy of the disordered Ising model in two dimensions [6]. While the 
calculations yield a singularity 

by means of the fermion replica representation, a rigorous analysis based on a scaling 
inequality [ l l]  and the investigation of a soluble model [ 5 ]  lead to an analytic Green 
function. Now we can interpret the tendency of the renormalisation group transforma- 
tion to a strong coupling behaviour in (18) as a reflection of the scaling inequality. 
Thus we conclude that there is a pertubation theory for G ( m )  around g = 0 which 
does not contradict the non-pertubative results. The reason for the invalidity of the 
replica trick rests on the symmetry breaking generated by the random potential K To 
discuss this effect we suppose E = O  in (4). Then we must shift the integration of V, 
along the real axis by isD,(s E R) to avoid the singularities of (H + m)-'. The averaged 
quantity ( ( H + ~ I ) - ' ) ~  is not a continuous function of s at s = O ;  the symmetry s--s 
is spontaneously broken. The regularisation i E D  plays then the role of an external 
symmetry breaking term which determines the sign of s: 

sgn s = sgn E (20) 
like a magnetic field in the Ising model which fixes the magnetisation below the critical 
temperature. 

These symmetry breaking effects are not present in the replica trick version defined 
in (6), since the relevant terms are ignored in the limit N + 0. Indeed, we can write 

G(m)=lim E - 0  (de t (H+m+iEaoD)-N~N(m,  V ,  E ) ) "  (21) 

with 

The spontaneous symmetry breaking occurs only in the inverse determinant. Thus we 
neglect it when we set N = 0 and remain with 

lim E + O  (&(m, V ,  E ) ) ~  = G,(m)  (22) 

on the RHS of (21). 
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However, we observe that the replica trick is not a unique procedure. There are 
alternative formulations which contain the symmetry breaking. For instance, we could 
substitute 

in (5). In that case we find the same pertubation theory as for the UPL(1,l)  symmetric 
representation. 

I am indebted to L Schafer for helpful discussions as well as to the referee for valuable 
remarks. 

References 

[ l ]  Schultz T, Mattis D C and Lieb E H 1964 Reo. Mod. Phys. 36 856 
Jackiw R and Schrieffer J S 1981 Nucl. Phys. B 190 253 

[2] Decker I and Hahn H 1978 Physica 93A 215 
Pruisken A 1984 Nucl. Phys. B 235 277 

[3] de Gennes P G 1972 Phys. Lett. 38A 339 
[4] Schafer L and Wegner F 1980 2. Phys. B 38 113 
[5] Ziegler K 1985 J. Phys. A: Math. Gen. 18 L801 
[6] Dotsenko V S and Dotsenko V S 1982 1. Phys. C: Solid State Phys. 15 495 

Jug G 1984 Phys. Rev. Lett. 53 9 
[7] Ziegler K 1982 Z. Phys. B 48 293 
[SI Gross D and Neveu A 1974 Phys. Rev. D 10 3235 
[9] Wilson K G and Kogut J 1974 Phys. Rep. 12C 77 

[lo] Gawedzki K and Kupiainen A 1985 Commun. Math. Phys. 102 1 
[ l l ]  Ziegler K 1985 Preprint, Gesamrhochschule Essen 


